Worksheet for 2021-10-06

Conceptual questions

These problems are taken from the announcement that Prof. Sethian sent out on 10/5.
Question 1. Can any two arbitrary (nice) functions comprise the partial derivatives f_{x}, f_{y} of another function, or are there some restrictions?
Question 2. When doing Lagrange multipliers for f subject to $g=0$, is it necessary that ∇f and ∇g point in the same direction for an extremum, or is opposite directions fine as well?
Question 3. Suppose P is a point where $f_{x}(P)=f_{y}(P)=0$, $f_{x x}(P)>0, f_{y y}(P)>0$, and $f_{x y}(P)>0$. Does this mean P is a local minimum of f ?
Question 4. Suppose P is a point where $f_{x}(P)=f_{y}(P)=0$ and for every unit vector \mathbf{u},

$$
\left(D_{\mathbf{u}}\left(D_{\mathbf{u}} f\right)\right)(P)>0 .
$$

Does this mean P is a local minimum of f ? The parentheses in this problem were originally misplaced.

Question 5. Let H be the zero level set of a function $f(x, y)$. Can H intersect itself? If so, give an example. What happens if you try to compute a tangent line to H at such a point using the "gradient = normal" method?
Question 6. In Lagrange multipliers, we might consider the problem:

Maximize the function $f(x, y, z)$ subject to the constraint that $g(x, y, z)=0$.
Suppose the maximum occurs at (a, b, c) and $f(a, b, c)=12$. Now consider the other problem

Maximize the function $g(x, y, z)$ subject to the constraint that $f(x, y, z)=12$.

Is the point (a, b, c) also the answer to this problem?

